Department of Chemistry

S. K. Porwal College of Arts, Science and Commerce, Kamptee-441001

Programme Specific Outcome of B.Sc. in Chemistry

Prepared by: Dr. M.B. Bagade, Dr. R. G. Chaudhary, Dr. S. Mondal and Dr. M. Nagmote

PSO1: The B.Sc. programme enabled the students to enhance their critical thinking, during the three years period of study and the curriculum motivates the mental thoughts and suppositions of the students. This helps the students to take up practical work and compare the results with their assumptions, there by leading to accuracy and validity of the practical knowledge. This Analysis leads to take decisions at intellectual, directorial and personal from different perspectives of life.

PSO2: Understand the basic principles and concepts underlying the inorganic, organic and physical chemistry.

PSO3: Comprehend the applications of chemistry in various walks of life.

PSO4: Students gained functional knowledges of the fundamental theoretical concepts and experimental methods of Chemistry.

PSO5: The students will be benefited to equip themselves to job requirements in the quality control, analytical laboratory or production wing of any Chemical or Pharmaceutical industry.

PSO6: Able to use instrumental methods of chemical analyses.

Course Outcome of Semester-I

Course	After completion of this course students will able to:
CH – 101: Paper- I	CO1: Basic knowledge of atomic structure, inorganic fundamental and
(Inorganic	periodic properties.
Chemistry)	CO2: Conceptualization of Valence bond theory (VBT) and Molecular
	Orbital theory (MOT), and VSPER theory.
	CO3: Differentiation in ionic and metallic bond, and S-block elements.
	CO4: A study of P-block elements, oxyacids of Suphur, hydride of
	Phosphorus, and noble gases.
CH-102: Paper- II	CO1: Basic knowledge of thermodynamics and calculations of problems
(Physical	related to Thermo-chemistry.
Chemistry)	CO2: Difference between Ideal gas and Real gas and their related
	equation.
	CO3: Understanding of Liquid State with emphasis on properties of liquid.
	CO4: Concept of adsorption isotherm and principles of catalysis.

Course Outcome of Semester-II

Course	After completion of this course students will able to:
CH – 201: Paper- I	CO1: Understand the concept structure, bonding in organic compounds
(Organic	and different types of reaction mechanisms.
Chemistry)	CO2: Understand the concept of stereochemistry in detail.
	CO3:Understand the nomenclature, synthesis, chemical and physical
	properties of alkanes, cycloalkanes and alkenes
	CO4:Understand the nomenclature, synthesis, chemical and physical
	properties of dienes, alkynes and also the concept of aromaticity of
	organic compounds.
CH-202: Paper- II	CO1: Second law of thermodynamics and free energy work functions.
(Physical	CO2: Understanding of Phase rule and liquid-liquid mixture.
Chemistry)	CO3: Insight into Nuclear Chemistry and Molecular Structure.
	CO4: laws of Chemical kinetics.

Course Outcome of Semester-III

Course	After completion of this course students will able to:
CH – 301: Paper- I	CO1: Diagrammatic representation of molecules according to MOT, and
(Inorganic Chemistry)	properties of interhalogen compounds
	CO2: Chemistry of first transition elements and non-aqueous solvents
	CO3:Comparative study of the second and third transition series and
	error in chemical analysis
	CO4: Chemistry of lanthanides and actinides, and lanthanide contraction
CH-302: Paper- II	CO1:Understand nomenclature, synthesis, chemical properties of alkanes
(Organic Chemistry)	in aryl, alkyl halides.
	CO2:Understand nomenclature, synthesis, chemical properties of
	dihydric, trihydric alcohols and phenols in detail
	CO3:Understand nomenclature, synthesis, chemical properties of
	aldehydes and ketones and mechanisms of nucleophilic addition
	CO4: Understand nomenclature, synthesis, chemical properties of
	carboxylic acids and their derivatives along with reactive
	mechanisms.

Course Outcome of Semester-IV

Course	After completion of this course students will able to:
CH – 401 : Paper- I	CO1: A detail study of coordination compounds and its applications.
(Inorganic Chemistry)	CO2: Isomerism and redox process in inorganic compounds.
	CO3: The concept organometallic and metal carbonyl compounds.
	CO4: Applications of inorganic macromolecules in the biological
	concept, and acid-bases principles.
CH – 402: Paper- II	CO1: Insight into laws of crystallography and Bravais lattices
(Physical Chemistry)	CO2: Debye-Huckel theory and concepts related to electrochemistry
	CO3: Introduction to Rotational and Vibration Spectroscopy.
	CO4: Basics of Quantum Chemistry, Operators and Schrodinger wave
	function.

Course Outcome of Semester-V

Course	accome of Semester v
	After completion of this course students will able to:
CH- 501: Paper- I (Organic Chemistry)	CO1: Know organic compounds of nitrogen in detail especially amines. CO2: Understand heterocyclic chemistry. CO3: Understand the theory behind the organic qualitative analysis and further details about organmetallic compounds CO4: Know the concepts of electromagnetic spectrum and further
CH- 502. Day	Infrared absorption spectroscopy in detail.
CH- 502: Paper- II	CO1: Introduction to cells, applications of Nernst equation.
(Physical Chemistry)	CO2: Quantum Chemistry and Molecular orbital theory application on
	Hydrogen atom.
	CO3: Concepts of Photochemical reactions and Raman spectroscopy.
	CO4: Detail discussion on colligative properties and ideas of macromolecules.

Course Outcome of Semester -VI

Course	After completion of this course students will able to:
CH - 601: Paper-	CO1: Conceptualization of metal-ligand bonding in transition metal
(Inorganic Chemistry)	complexes, CFT and electronic spectra of metal complexes
	CO2:Magnetic and kinetics properties of transition metal complexes
	CO3: Principles of colorimetery, spectrophotometry and chromatography
	CO4: A study of inorganic polymers and its applications
CH- 602: Paper- II	CO1: Understand the Nuclear magnetic resonance spectroscopy.
(Organic Chemistry)	CO2: Understand organic synthesis through enolates and carbohydrates
	in details.
	CO3: Understand structure and properties of biomolecules.
	CO4: Understand the importance of synthetic dyes, synthetic drugs and
1	synthetic polymers

Dr. R. G. Chaudhary

HOD T. R. G. Chaudhary HEAD

Department of Chemistry Parkal College, Kampice

Dr. M. B. Bagade

Principal

Principal ... Porwal College of Arts, Scient and Commerce, Kamptee