# Seth Kesarimal Porwal College of Arts \& Science \& Commerce, Kamptee Department of Mathematics 

## B. Sc. Mathematics

## Programme Specific Outcomes

After the successful completion of this course, the student will:

* Be able to cultivate a mathematical attitude and nurture the interests.
* Be able to communicate to lay audiences and arouse their interest in the beauty and precision of mathematical arguments and science.
* Be able to explain the core ideas and techniques of mathematics at the college level.
* Be able to recognize the power of abstraction and generalization in mathematical work.
* Be able to carry out objective analysis and prediction of quantitative information with independent judgment.
* Be able to recognize the importance of Mathematics in the modern era.
* Be able to work independently and to collaborate effectively in team work.
* Be able to continuously enrich themselves through lifelong learning.


## Mathematics Course Outcomes

## Semester I M-1 Algebra and Trigonometry

M-2 Calculus

On completion of this course, successful students will be able to:

* Understand the concepts of Matrices and linear equations.
* Understand the relation between roots and coefficients of an equation.
* Understand De Moivre's theorem and its applications.
* Familiarize real and imaginary parts of a circular and hyperbolic functions of a complex variable.
* Analyze Group, subgroups, cosets and permutations.
* Analyze the limit and continuity of the function of one variable.
* Learn about differentiation, successive differentiation and Lebnitz's theorem.
* Expand a function using Taylor's and Maclaurin's series.
* Conceive the concepts of curvature and asymptotes and obtain their equations.
* Evaluate indeterminate forms by using L'Hospital's Rule.
* Learn about partial derivatives and its applications, Euler's theorem on homogeneous functions and Jacobians.
* Find integrations of irrational algebraic functions and use of reduction formulae.


## Semester II M-3 Geometry, Differential and Difference Equations <br> M-4 Vector Calculus and Improper Integrals

On completion of this course, successful students will be able to:

* Learn about sphere, tangent line, tangent plane, right circular cone and right circular cylinder.
* Solve first order exact differential equation and obtain an integrating factor which may reduce a given differential equation into an exact one.
* Identify and obtain the solution of Bernoulli's differential equation and Clairaut's equation.
* Find the complementary function and particular integrals of linear differential equation.
* Solve Euler's equidimensional equation and solve the differential equation by using method of variation of parameters.
* Learn about difference equation and find the CF and PI of difference equations.
* Understand the concepts of vector differentiation, gradient, divergence and curl.
* Evaluate line integral and work done.
* Evaluate double integral for area and evaluation by change of order of integration.
* Evaluate triple integrals.
* Evaluate surface integrals and volume integrals.
* Analyze Green's theorem in a plane, Stoke's theorem and Gauss Divergence theorem.
* Learn about improper integrals and their convergence, comparison tests, Beta and Gamma functions.


## Semester III $\quad$ M - 5 Advanced Calculus, Sequence and Series

M-6 Differential Equations and Group Homomorphism
On completion of this course, successful students will be able to:

* Analyze mean value theorems, limit and continuity of function of two variables and Taylor's theorem for function of two variables.
* Learn about Envelopes, Maxima, Minima and Saddle points of functions of two variables and Lagrange's multiplier method.
* Understand the concepts of convergence of sequences.
* Analyze monotonic sequences, Cauchy's sequence and Cauchy's convergence criterion.
* Determine convergence of series of non - negative terms using different tests.
* Learn about alternating series and absolute and conditional convergence of series.
* Analyze Bessel's and Legendre's functions and their properties.
* Understand Laplace transforms and its properties.
* Evaluate Laplace transform of derivatives and integrals.
* Solve differential equation using the Laplace transform technique.
* Analyze Fourier transform, Sine and Cosine transforms.
* Learn the concept of Normal subgroup, Quotient subgroup, Cyclic group, Group Homomorphism and Isomorphism.


## Semester IV <br> M-7 Partial Differential Equations and Calculus of Variation M-8 Mechanics

On completion of this course, successful students will be able to:

* Solve simultaneous differential equations of the first order and the first degree in three variables.
* Learn about Pfaffian differential equation in three variables and first order partial differential equation.
* Use Lagrange's method for solving the first order linear partial differential equation.
* Use of Charpit's method and Jacobi's method for solving partial differential equation.
* Determine the solution of partial differential equation of second and higher order with constant coefficients.
* Familiarize the concepts of Functional and Euler's differential equation and applications.
* Analyze analytical conditions of equilibrium of coplanar forces, virtual work and catenary.
* Analyze velocities and accelerations along radial and transverse directions, and along tangential and normal directions and simple harmonic motion.
* Learn about Constraints, D'Alembert's principle, Lagrange's equations of motion and Lagrangian.
* Analyze reduction to the equivalent one body problem, Virial theorem and Central orbits.

Semester V M - 9 Analysis
M - 10 Metric Space, Complex Integration and Algebra
On completion of this course, successful students will be able to:

* Define and analyze Fourier series.
* Learn about Riemann - Stieltjes integral and its properties.
* Conceive the concepts of analytic functions, Cauchy - Riemann equations and harmonic functions.
* Analyze Mobius transformation, fixed points and conformal mapping.
* Understand the concepts of Countable and Uncountable sets, Metric spaces, and Open and Closed sets.
* Understand the theory of Completeness, Compactness and Connectedness.
* Analyze the concepts of Rings, Integral Domains, Ideals, Fields and Quotient Ring.
* Understand the theory and techniques of complex integration.
* Analyze Cauchy's integral theorem and formula, singularity and residue theorem.


## Semester VI M-11 Abstract Algebra <br> M-12 Special Theory of Relativity

On completion of this course, successful students will be able to:

* Analyze the concepts of Group Automorphisms, Inner Automorphisms and Normalizer.
* Understand the concepts of Vector Spaces and subspaces over a field and their properties including the basis structure of vector spaces.
* Conceive the concepts of linear transformations including range, rank, kernel, nullity and inverse.
* Learn about matrices of linear maps, inner product space and Gram - Schmidt orthogonalisation process.
* Analyze Newtonian relativity, Galilean transformations and Michelson - Morley experiment.
* Learn about Lorentz transformations, its geometrical interpretation and Group properties.
* Understand the concepts of event, particle, simultaneity, length contraction and time dilation.
* Learn about transformation of particle velocities, transformation of acceleration and transformation of Lorentz contraction factor.
* Understand the concepts of Tensors, Riemannian metric, Minkowski space, four vectors and four tensors.
* Analyze equivalence of mass and energy, transformation formula for mass, and transformation formula for momentum and energy.
* Understand the concepts of four velocity, four acceleration, the energy momentum tensor, Maxwell's equations of electromagnetic theory in vacuum, and four potential.


